Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Jiang Tu, ${ }^{a}$ Xu Deng, ${ }^{a}$ Ya-Yin Fang, ${ }^{\text {a }}$ Ya-Mei Guo, ${ }^{\text {b }}$ Miao Du ${ }^{\text {b }}$ and Xiao-Hong Liu ${ }^{a}$
${ }^{\text {a Department of Chemistry, Xuzhou Nomal }}$ University, Xuzhou 221009, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
dumiao@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.102$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-7,7-dimethyl-5-oxo-4-phenyl-5,6,7,8-tetra-hydro-4H-chromene-3-carbonitrile

In the molecule of the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, the $\mathrm{C} 7 /$ $\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{O} 1 / \mathrm{C} 10 / \mathrm{C} 11$ plane forms an angle of 92.5 (4) ${ }^{\circ}$ with the phenyl plane. The most striking feature of the title compound is the formation of a three-dimensional network through N $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Polyfunctionalized benzo- 4 H -pyrans are structural units of a number of natural products (Hatakeyama et al., 1988) and, because of their inherent reactivity, the pyran rings are versatile synthons (Singh et al., 1996). On the other hand, substituted benzo- $4 H$-pyrans possess varied biological activity (Hassanien et al., 1999). Since the stereochemistry is so important in the rational design of new functional molecules, we report herein the crystal structure of the title compound, (I).

(I)

In the structure (Fig. 1) of the neutral molecule (I), the C7/ $\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{O} 1 / \mathrm{C} 10 / \mathrm{C} 11$ plane forms an angle of 92.5 (4) ${ }^{\circ}$ with the phenyl plane. The nitrile group is typical $[\mathrm{N} \equiv \mathrm{C}$ 1.1448 (19) Å].

A notable feature of (I) is the formation of a threedimensional network through hydrogen bonds, as shown in Fig. 2. These are in the normal range of weak interactions (Sasada, 1984). The amino N 2 atom of one molecule links through $\mathrm{H} 2 B$ to the nitrile N 1 atom of another molecule, creating a dimer. The amino N 2 atom of one molecule also links through $\mathrm{H} 2 A$ to the keto O 2 atom of another molecule to form the three-dimensional framework.

Experimental

The title compound was prepared by the reaction of 2-cyanocinnamonitrile with 5,5'-dimethyl-1,3-cyclohexanedione in ethylene under reflux for 4 h . The colorless solid was purified by recrystallization from ethanol to obtain single crystals suitable for X-ray diffraction. The product was characterized by NMR, IR and elemental analyses, giving results consistent with those in the literature (Singh et al., 1996).

Received 5 March 2001

Accepted 15 March 2001
Online 23 March 2001

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=294.34$
Monoclinic, $P 2_{1} / c$
$a=11.307$ (1) A
$b=9.475$ (1) \AA
$c=14.919$ (2) \AA
$\beta=99.34$ (1) ${ }^{\circ}$
$V=1577.1(3) \AA^{3}$
$Z=4$
Data collection

Bruker SMART 1000 diffract-	$\theta_{\max }=25.0^{\circ}$
\quad ometer	$h=0 \rightarrow 13$
ω scans	$k=0 \rightarrow 11$
3252 measured reflections	$l=-17 \rightarrow 17$
2783 independent reflections	3 standard reflections
1942 reflections with $I>2 \sigma(I)$	every 97 reflections
$R_{\text {int }}=0.013$	intensity decay: 2.7%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.102$
$S=1.02$
2783 reflections
208 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=3.3-15.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, colorless
$0.56 \times 0.50 \times 0.40 \mathrm{~mm}$
$\theta_{\text {max }}=25.0^{\circ}$
$k=0 \rightarrow 11$
$l=-17 \rightarrow 17$
every 97 reflections intensity decay: 2.7%
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0561 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.044 (3)

Figure 1
ORTEPII view (Johnson, 1976) of the title complex with displacement ellipsoids at the 30% probability level

Figure 2
The molecular packing diagram of the title complex.

[^0]
[^0]: Hatakeyama, S., Ochi, N., Numata, H. \& Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1204.
 Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
 Sasada, Y. (1984). Molecular and Crystal Structures. In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.
 Sheldrick, G. M. (1997). SADABS, SHELXS97 and SHELXL97. University of Göttingen, Germany.
 Singh, K., Singh, J. \& Singh, H. (1996). Tetrahedron, 52, 14273-14280.

